Nuprl Lemma : fl-deq_wf

[T:Type]. ∀[eq:EqDecider(T)].  (fl-deq(T;eq) ∈ EqDecider(Point(face-lattice(T;eq))))


Proof




Definitions occuring in Statement :  fl-deq: fl-deq(T;eq) face-lattice: face-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B fl-deq: fl-deq(T;eq) and: P ∧ Q uimplies: supposing a so_lambda: λ2x.t[x] prop: implies:  Q so_apply: x[s] all: x:A. B[x] bdd-distributive-lattice: BoundedDistributiveLattice guard: {T}
Lemmas referenced :  fl-point deq_wf deq-fset_wf fset_wf union-deq_wf strong-subtype-deq-subtype strong-subtype-set2 all_wf not_wf fset-member_wf deq_functionality_wrt_ext-eq lattice-point_wf face-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf assert_wf fset-antichain_wf ext-eq_inversion subtype_rel_weakening
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule universeEquality unionEquality cumulativity because_Cache setEquality productEquality independent_isectElimination lambdaEquality functionEquality inlEquality inrEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (fl-deq(T;eq)  \mmember{}  EqDecider(Point(face-lattice(T;eq))))



Date html generated: 2016_05_18-AM-11_39_27
Last ObjectModification: 2015_12_28-PM-01_57_51

Theory : lattices


Home Index