Nuprl Lemma : fl-deq_wf
∀[T:Type]. ∀[eq:EqDecider(T)].  (fl-deq(T;eq) ∈ EqDecider(Point(face-lattice(T;eq))))
Proof
Definitions occuring in Statement : 
fl-deq: fl-deq(T;eq)
, 
face-lattice: face-lattice(T;eq)
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
fl-deq: fl-deq(T;eq)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
guard: {T}
Lemmas referenced : 
fl-point, 
deq_wf, 
deq-fset_wf, 
fset_wf, 
union-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set2, 
all_wf, 
not_wf, 
fset-member_wf, 
deq_functionality_wrt_ext-eq, 
lattice-point_wf, 
face-lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
assert_wf, 
fset-antichain_wf, 
ext-eq_inversion, 
subtype_rel_weakening
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
universeEquality, 
unionEquality, 
cumulativity, 
because_Cache, 
setEquality, 
productEquality, 
independent_isectElimination, 
lambdaEquality, 
functionEquality, 
inlEquality, 
inrEquality, 
instantiate
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].    (fl-deq(T;eq)  \mmember{}  EqDecider(Point(face-lattice(T;eq))))
Date html generated:
2016_05_18-AM-11_39_27
Last ObjectModification:
2015_12_28-PM-01_57_51
Theory : lattices
Home
Index