Nuprl Lemma : free-dlwc-basis

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
  (x \/(λs./\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))


Proof




Definitions occuring in Statement :  free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-fset-join: \/(s) lattice-fset-meet: /\(s) lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a prop: and: P ∧ Q top: Top bdd-distributive-lattice: BoundedDistributiveLattice rev_implies:  Q iff: ⇐⇒ Q uiff: uiff(P;Q) cand: c∧ B implies:  Q all: x:A. B[x] exists: x:A. B[x] false: False not: ¬A squash: T rev_uimplies: rev_uimplies(P;Q) fset-ac-le: fset-ac-le(eq;ac1;ac2) guard: {T} cons: [a b] fset-singleton: {x} sq_stable: SqStable(P) btrue: tt eq_atom: =a y record-update: r[x := v] mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) record-select: r.x lattice-0: 0 lattice-fset-join: \/(s) bfalse: ff it: nil: [] empty-fset: {} list_ind: list_ind reduce: reduce(f;k;as) deq-member: x ∈b L ifthenelse: if then else fi  assert: b fset-member: a ∈ s fset-add: fset-add(eq;x;s) true: True fset-constrained-ac-lub: lub(P;ac1;ac2) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] fset-ac-lub: fset-ac-lub(eq;ac1;ac2) or: P ∨ Q decidable: Dec(P) f-proper-subset: xs ⊆≠ ys order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  lattice-point_wf free-dist-lattice-with-constraints_wf fset_wf deq_wf istype-universe strong-subtype-set2 fset-contains-none_wf fset-all_wf fset-antichain_wf assert_wf strong-subtype-deq-subtype deq-fset_wf free-dlwc-point lattice-join_wf lattice-meet_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set fset-image_wf fset-subtype2 assert_witness equal_wf and_wf member-fset-singleton fset-member_wf isect_wf uall_wf iff_weakening_uiff fset-all-iff fset-antichain-singleton fset-singleton_wf bdd-distributive-lattice-subtype-bdd-lattice lattice-fset-join-is-lub member-fset-image-iff free-dlwc-le not_wf assert_of_bnot f-subset_wf iff_wf all_wf bool_wf deq-f-subset_wf fset-filter_wf fset-null_wf bnot_wf assert-fset-null assert-deq-f-subset fset-filter-is-empty f-subset_weakening decidable__equal-free-dist-lattice-with-constraints-point lattice-fset-join_wf fset-ac-le-implies2 sq_stable__fset-member set_wf fset-add_wf empty-fset_wf sq_stable__squash sq_stable__all exists_wf squash_wf fset-induction fset-union_wf iff_weakening_equal lattice-fset-join-union true_wf free-dlwc-join member-fset-union f-proper-subset-dec_wf member-fset-minimals member-fset-add lattice-fset-join-singleton assert-fset-antichain deq-implies bdd-distributive-lattice-subtype-lattice lattice-le-order istype-void lattice-fset-meet-free-dlwc-inc sq_stable__assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality_alt applyEquality because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsType instantiate universeEquality independent_isectElimination functionExtensionality lambdaEquality productEquality setEquality cumulativity productElimination rename setElimination voidEquality voidElimination isect_memberEquality equalityTransitivity dependent_functionElimination levelHypothesis applyLambdaEquality equalitySymmetry hyp_replacement addLevel isect_memberFormation independent_functionElimination independent_pairFormation dependent_set_memberEquality lambdaFormation imageElimination functionEquality dependent_pairFormation baseClosed imageMemberEquality natural_numberEquality unionElimination inlFormation inrFormation lambdaFormation_alt equalityIsType1 setIsType

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
\mforall{}[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)))



Date html generated: 2019_10_31-AM-07_21_43
Last ObjectModification: 2018_11_08-PM-06_01_41

Theory : lattices


Home Index