Step
*
of Lemma
free-dlwc-basis
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
  (x = \/(λs./\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
BY
{ (Auto THEN Assert ⌜x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))⌝⋅) }
1
.....assertion..... 
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. x : Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
⊢ x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
2
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. x : Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
5. x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
⊢ x = \/(λs./\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
Latex:
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].
\mforall{}[x:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))].
    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)))
By
Latex:
(Auto  THEN  Assert  \mkleeneopen{}x  =  \mbackslash{}/(\mlambda{}s.\{s\}"(x))\mkleeneclose{}\mcdot{})
Home
Index