Step
*
2
of Lemma
free-dlwc-basis
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. x : Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
5. x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
⊢ x = \/(λs./\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
BY
{ (NthHypEq (-1) THEN RepeatFor 2 ((EqCD THEN Auto))) }
1
.....subterm..... T:t
2:n
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. x : Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
5. x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
⊢ λs./\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x)
= λs.{s}"(x)
∈ fset(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. Cs : T {}\mrightarrow{} fset(fset(T))
4. x : Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
5. x = \mbackslash{}/(\mlambda{}s.\{s\}"(x))
\mvdash{} x = \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))"(x))
By
Latex:
(NthHypEq (-1) THEN RepeatFor 2 ((EqCD THEN Auto)))
Home
Index