Nuprl Lemma : lattice-fset-meet-free-dlwc-inc

[T:Type]. ∀[eq:EqDecider(T)]. ∀[Cs:T ⟶ fset(fset(T))]. ∀[s:fset(T)].
  /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s)) {s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])) 
  supposing ↑fset-contains-none(eq;s;x.Cs[x])


Proof




Definitions occuring in Statement :  free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-fset-meet: /\(s) lattice-point: Point(l) fset-image: f"(s) fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) deq-fset: deq-fset(eq) fset-singleton: {x} fset: fset(T) deq: EqDecider(T) assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q prop: cand: c∧ B uiff: uiff(P;Q) implies:  Q bdd-distributive-lattice: BoundedDistributiveLattice all: x:A. B[x] free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) iff: ⇐⇒ Q rev_implies:  Q fset-ac-le: fset-ac-le(eq;ac1;ac2) rev_uimplies: rev_uimplies(P;Q) squash: T not: ¬A false: False exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} ifthenelse: if then else fi  btrue: tt bfalse: ff fset-singleton: {x} fset-filter: {x ∈ P[x]} bool: 𝔹 unit: Unit it: fset-null: fset-null(s) assert: b fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset-contains-none-of: fset-contains-none-of(eq;s;cs) f-subset: xs ⊆ ys sq_stable: SqStable(P) order: Order(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  free-dlwc-point deq-fset_wf fset_wf strong-subtype-deq-subtype assert_wf fset-antichain_wf fset-all_wf fset-contains-none_wf strong-subtype-set2 fset-singleton_wf fset-antichain-singleton fset-all-iff member-fset-singleton assert_witness fset-member_wf lattice-fset-meet-is-glb free-dist-lattice-with-constraints_wf bdd-distributive-lattice-subtype-bdd-lattice fset-image_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf free-dlwc-inc_wf member-fset-image-iff deq_wf free-dlwc-le bnot_wf fset-null_wf fset-filter_wf deq-f-subset_wf bool_wf all_wf iff_wf f-subset_wf assert_of_bnot not_wf bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert eqff_to_assert filter_cons_lemma filter_nil_lemma equal-wf-T-base uiff_transitivity assert-deq-f-subset iff_transitivity iff_weakening_uiff null_cons_lemma false_wf f-singleton-subset assert-fset-null f-union_wf fset-filter-is-empty exists_wf member-f-union fset-member_witness and_wf lattice-fset-meet_wf decidable__equal-free-dist-lattice-with-constraints-point fset-ac-le-implies2 ifthenelse_wf empty-fset_wf sq_stable__fset-member mem_empty_lemma lattice-le-order bdd-distributive-lattice-subtype-lattice
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis cumulativity hypothesisEquality applyEquality setEquality productEquality lambdaEquality functionExtensionality independent_isectElimination because_Cache dependent_set_memberEquality independent_pairFormation productElimination hyp_replacement equalitySymmetry applyLambdaEquality independent_functionElimination equalityTransitivity instantiate universeEquality lambdaFormation axiomEquality functionEquality dependent_functionElimination setElimination rename imageElimination unionElimination baseClosed equalityElimination impliesFunctionality dependent_pairFormation imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[Cs:T  {}\mrightarrow{}  fset(fset(T))].  \mforall{}[s:fset(T)].
    /\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))  =  \{s\}  supposing  \muparrow{}fset-contains-none(eq;s;x.Cs[x])



Date html generated: 2017_10_05-AM-00_37_33
Last ObjectModification: 2017_07_28-AM-09_15_32

Theory : lattices


Home Index