Nuprl Lemma : decidable__equal-free-dist-lattice-with-constraints-point

[T:Type]
  ∀eq:EqDecider(T). ∀Cs:T ⟶ fset(fset(T)). ∀a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
    Dec(a b ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))


Proof




Definitions occuring in Statement :  free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) lattice-point: Point(l) fset: fset(T) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q prop:
Lemmas referenced :  free-dlwc-point decidable__equal_set fset_wf decidable__equal_fset decidable-equal-deq and_wf assert_wf fset-antichain_wf fset-all_wf fset-contains-none_wf set_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache isect_memberFormation lambdaFormation hypothesisEquality independent_functionElimination dependent_functionElimination lambdaEquality applyEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}Cs:T  {}\mrightarrow{}  fset(fset(T)).
    \mforall{}a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
        Dec(a  =  b)



Date html generated: 2016_05_18-AM-11_32_59
Last ObjectModification: 2015_12_28-PM-01_58_54

Theory : lattices


Home Index