Nuprl Lemma : decidable__equal-free-dist-lattice-with-constraints-point
∀[T:Type]
  ∀eq:EqDecider(T). ∀Cs:T ⟶ fset(fset(T)). ∀a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
    Dec(a = b ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
Proof
Definitions occuring in Statement : 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
free-dlwc-point, 
decidable__equal_set, 
fset_wf, 
decidable__equal_fset, 
decidable-equal-deq, 
and_wf, 
assert_wf, 
fset-antichain_wf, 
fset-all_wf, 
fset-contains-none_wf, 
set_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
because_Cache, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaEquality, 
applyEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}Cs:T  {}\mrightarrow{}  fset(fset(T)).
    \mforall{}a,b:Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])).
        Dec(a  =  b)
Date html generated:
2016_05_18-AM-11_32_59
Last ObjectModification:
2015_12_28-PM-01_58_54
Theory : lattices
Home
Index