Nuprl Lemma : decidable__equal_set
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∀[P:T ⟶ Type]. ∀x,y:{x:T| P[x]} .  Dec(x = y ∈ {x:T| P[x]} )))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
label: ...$L... t
, 
false: False
Lemmas referenced : 
it_wf, 
not_wf, 
equal_wf, 
decidable_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
setEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
lemma_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
unionElimination, 
inlFormation, 
inrFormation, 
dependent_set_memberEquality, 
introduction, 
equalityElimination, 
independent_functionElimination, 
because_Cache, 
voidElimination
Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  Type].  \mforall{}x,y:\{x:T|  P[x]\}  .    Dec(x  =  y)))
Date html generated:
2016_05_13-PM-03_17_57
Last ObjectModification:
2016_01_06-PM-05_20_29
Theory : core_2
Home
Index