Nuprl Lemma : decidable__equal_set

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀[P:T ⟶ Type]. ∀x,y:{x:T| P[x]} .  Dec(x y ∈ {x:T| P[x]} )))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_apply: x[s] prop: so_lambda: λ2x.t[x] decidable: Dec(P) or: P ∨ Q guard: {T} not: ¬A subtype_rel: A ⊆B label: ...$L... t false: False
Lemmas referenced :  it_wf not_wf equal_wf decidable_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality setEquality applyEquality functionEquality cumulativity universeEquality lemma_by_obid isectElimination sqequalRule lambdaEquality unionElimination inlFormation inrFormation dependent_set_memberEquality introduction equalityElimination independent_functionElimination because_Cache voidElimination

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}[P:T  {}\mrightarrow{}  Type].  \mforall{}x,y:\{x:T|  P[x]\}  .    Dec(x  =  y)))



Date html generated: 2016_05_13-PM-03_17_57
Last ObjectModification: 2016_01_06-PM-05_20_29

Theory : core_2


Home Index