Nuprl Lemma : fset-subtype2

[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  (s ∈ fset({z:T| z ∈ s} ))


Proof




Definitions occuring in Statement :  fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) prop: quotient: x,y:A//B[x; y] and: P ∧ Q fset-member: a ∈ s so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q iff: ⇐⇒ Q rev_implies:  Q set-equal: set-equal(T;x;y) sq_stable: SqStable(P) squash: T
Lemmas referenced :  fset_wf fset-member_wf quotient-member-eq list_wf assert_wf deq-member_wf set-equal_wf set-equal-equiv list-subtype subtype_rel_list l_member_wf subtype_rel_sets assert-deq-member deq_wf subtype_rel_list_set istype-assert sq_stable_from_decidable decidable__assert l_member-settype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin setEquality hypothesisEquality sqequalRule hypothesis pertypeElimination promote_hyp productElimination Error :lambdaEquality_alt,  Error :inhabitedIsType,  Error :universeIsType,  independent_isectElimination because_Cache dependent_functionElimination applyEquality setElimination rename Error :setIsType,  Error :lambdaFormation_alt,  equalityTransitivity equalitySymmetry independent_functionElimination Error :productIsType,  Error :equalityIstype,  sqequalBase axiomEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  imageMemberEquality baseClosed imageElimination independent_pairFormation Error :dependent_set_memberEquality_alt

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    (s  \mmember{}  fset(\{z:T|  z  \mmember{}  s\}  ))



Date html generated: 2019_06_20-PM-01_58_39
Last ObjectModification: 2018_12_19-PM-05_04_02

Theory : finite!sets


Home Index