Nuprl Lemma : fset-subtype2
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  (s ∈ fset({z:T| z ∈ s} ))
Proof
Definitions occuring in Statement : 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset: fset(T)
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
fset-member: a ∈ s
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
set-equal: set-equal(T;x;y)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
fset_wf, 
fset-member_wf, 
quotient-member-eq, 
list_wf, 
assert_wf, 
deq-member_wf, 
set-equal_wf, 
set-equal-equiv, 
list-subtype, 
subtype_rel_list, 
l_member_wf, 
subtype_rel_sets, 
assert-deq-member, 
deq_wf, 
subtype_rel_list_set, 
istype-assert, 
sq_stable_from_decidable, 
decidable__assert, 
l_member-settype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
pertypeElimination, 
promote_hyp, 
productElimination, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
Error :universeIsType, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
Error :setIsType, 
Error :lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
Error :productIsType, 
Error :equalityIstype, 
sqequalBase, 
axiomEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
Error :dependent_set_memberEquality_alt
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    (s  \mmember{}  fset(\{z:T|  z  \mmember{}  s\}  ))
Date html generated:
2019_06_20-PM-01_58_39
Last ObjectModification:
2018_12_19-PM-05_04_02
Theory : finite!sets
Home
Index