Nuprl Lemma : dM-to-FL-opp

[I:fset(ℕ)]. ∀[x:names(I)].  (dM-to-FL(I;<1-x>(x=0) ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) fl0: (x=0) face_lattice: face_lattice(I) dM_opp: <1-x> names: names(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dM-to-FL: dM-to-FL(I;z) dM_opp: <1-x> dmopp: <1-i> subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  names_wf fset_wf nat_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf union-deq_wf names-deq_wf face_lattice-deq_wf fl1_wf fl0_wf squash_wf true_wf lattice-extend-dl-inc subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache applyEquality instantiate lambdaEquality productEquality cumulativity independent_isectElimination unionEquality equalityTransitivity equalitySymmetry lambdaFormation unionElimination dependent_functionElimination independent_functionElimination inrEquality natural_numberEquality imageElimination universeEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:names(I)].    (dM-to-FL(I;ə-x>)  =  (x=0))



Date html generated: 2019_11_04-PM-05_33_30
Last ObjectModification: 2018_08_21-PM-02_02_55

Theory : cubical!type!theory


Home Index