Nuprl Lemma : neg-dM_inc
∀[I:fset(ℕ)]. ∀[x:names(I)].  (¬(<x>) = <1-x> ∈ Point(dM(I)))
Proof
Definitions occuring in Statement : 
dM_opp: <1-x>
, 
dM_inc: <x>
, 
dM: dM(I)
, 
names-deq: NamesDeq
, 
names: names(I)
, 
dm-neg: ¬(x)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dM_opp: <1-x>
, 
dM_inc: <x>
, 
dM: dM(I)
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
free-dma-point, 
equal_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
free-DeMorgan-lattice_wf, 
names_wf, 
names-deq_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
dm-neg-inc, 
dmopp_wf, 
iff_weakening_equal, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
instantiate, 
productEquality, 
cumulativity, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:names(I)].    (\mneg{}(<x>)  =  ə-x>)
Date html generated:
2017_10_05-AM-00_59_33
Last ObjectModification:
2017_07_28-AM-09_25_21
Theory : cubical!type!theory
Home
Index