Nuprl Lemma : dM-to-FL-inc
∀[I:fset(ℕ)]. ∀[x:names(I)]. (dM-to-FL(I;<x>) = (x=1) ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement :
dM-to-FL: dM-to-FL(I;z)
,
fl1: (x=1)
,
face_lattice: face_lattice(I)
,
dM_inc: <x>
,
names: names(I)
,
lattice-point: Point(l)
,
fset: fset(T)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
dM-to-FL: dM-to-FL(I;z)
,
dM_inc: <x>
,
dminc: <i>
,
subtype_rel: A ⊆r B
,
bdd-distributive-lattice: BoundedDistributiveLattice
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
and: P ∧ Q
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
true: True
,
squash: ↓T
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
names_wf,
fset_wf,
nat_wf,
lattice-point_wf,
face_lattice_wf,
subtype_rel_set,
bounded-lattice-structure_wf,
lattice-structure_wf,
lattice-axioms_wf,
bounded-lattice-structure-subtype,
bounded-lattice-axioms_wf,
uall_wf,
equal_wf,
lattice-meet_wf,
lattice-join_wf,
union-deq_wf,
names-deq_wf,
face_lattice-deq_wf,
fl1_wf,
fl0_wf,
squash_wf,
true_wf,
lattice-extend-dl-inc,
subtype_rel_self,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
isect_memberEquality,
axiomEquality,
because_Cache,
applyEquality,
instantiate,
lambdaEquality,
productEquality,
cumulativity,
independent_isectElimination,
unionEquality,
equalityTransitivity,
equalitySymmetry,
lambdaFormation,
unionElimination,
dependent_functionElimination,
independent_functionElimination,
inlEquality,
natural_numberEquality,
imageElimination,
universeEquality,
imageMemberEquality,
baseClosed,
productElimination
Latex:
\mforall{}[I:fset(\mBbbN{})]. \mforall{}[x:names(I)]. (dM-to-FL(I;<x>) = (x=1))
Date html generated:
2019_11_04-PM-05_33_22
Last ObjectModification:
2018_08_21-PM-02_02_45
Theory : cubical!type!theory
Home
Index