Nuprl Lemma : cubical-subset_wf

[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[psi:I:fset(ℕ) ⟶ alpha:X(I) ⟶ T(alpha) ⟶ ℙ].
  X ⊢ {t:T | ∀I,alpha. psi[I;alpha;t]} supposing cubical-type-restriction(X;T;I,a,t.psi[I;a;t])


Proof




Definitions occuring in Statement :  cubical-subset: cubical-subset cubical-type-restriction: cubical-type-restriction cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  cubical-type-restriction: cubical-type-restriction uall: [x:A]. B[x] uimplies: supposing a all: x:A. B[x] member: t ∈ T implies:  Q so_apply: x[s1;s2;s3] prop: subtype_rel: A ⊆B cubical-subset: cubical-subset cubical-type: {X ⊢ _} guard: {T} and: P ∧ Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  names-hom_wf I_cube_wf istype-cubical-type-at cube-set-restriction_wf cubical-type-ap-morph_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 fset_wf nat_wf cubical-type_wf cubical_set_wf cubical-type-at_wf equal_wf squash_wf true_wf istype-universe cubical-type-ap-morph-id nh-id_wf subtype_rel_self iff_weakening_equal cubical-type-ap-morph-comp nh-comp_wf subtype_rel-equal cube-set-restriction-id cube-set-restriction-comp
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt functionIsType because_Cache universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate universeEquality dependent_set_memberEquality_alt dependent_pairEquality_alt lambdaEquality_alt setEquality functionExtensionality setElimination rename dependent_functionElimination independent_functionElimination independent_pairFormation lambdaFormation_alt imageElimination equalityTransitivity equalitySymmetry independent_isectElimination natural_numberEquality imageMemberEquality baseClosed productElimination setIsType productIsType equalityIstype

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[psi:I:fset(\mBbbN{})  {}\mrightarrow{}  alpha:X(I)  {}\mrightarrow{}  T(alpha)  {}\mrightarrow{}  \mBbbP{}].
    X  \mvdash{}  \{t:T  |  \mforall{}I,alpha.  psi[I;alpha;t]\}  supposing  cubical-type-restriction(X;T;I,a,t.psi[I;a;t])



Date html generated: 2020_05_20-PM-03_13_36
Last ObjectModification: 2020_04_06-PM-05_17_04

Theory : cubical!type!theory


Home Index