Nuprl Lemma : cubical-type-ap-morph_wf

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[I,J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[a:X(I)]. ∀[u:A(a)].  ((u f) ∈ A(f(a)))


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet names-hom: I ⟶ J fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} cubical-type-ap-morph: (u f) all: x:A. B[x] pi2: snd(t) cubical-type-at: A(a) pi1: fst(t)
Lemmas referenced :  cubical_type_at_pair_lemma istype-cubical-type-at I_cube_wf names-hom_wf fset_wf nat_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis applyEquality hypothesisEquality isectElimination universeIsType because_Cache instantiate

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[a:X(I)].  \mforall{}[u:A(a)].    ((u  a  f)  \mmember{}  A(f(a)))



Date html generated: 2020_05_20-PM-01_47_57
Last ObjectModification: 2020_04_06-PM-11_38_34

Theory : cubical!type!theory


Home Index