Nuprl Lemma : cubical-type-ap-morph-id

[X:j⊢]. ∀[A:{X ⊢ _}]. ∀[I:fset(ℕ)]. ∀[f:I ⟶ I]. ∀[a:X(I)]. ∀[u:A(a)].  (u f) u ∈ A(a) supposing 1 ∈ I ⟶ I


Proof




Definitions occuring in Statement :  cubical-type-ap-morph: (u f) cubical-type-at: A(a) cubical-type: {X ⊢ _} I_cube: A(I) cubical_set: CubicalSet nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q true: True cubical-type: {X ⊢ _} cubical-type-ap-morph: (u f) all: x:A. B[x] pi2: snd(t)
Lemmas referenced :  equal_wf cubical-type-at_wf cubical-type-ap-morph_wf subtype_rel-equal cube-set-restriction_wf squash_wf true_wf istype-universe I_cube_wf cube-set-restriction-when-id subtype_rel_self iff_weakening_equal nh-id_wf istype-cubical-type-at names-hom_wf fset_wf nat_wf cubical-type_wf cubical_set_wf cubical_type_at_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt hypothesis because_Cache equalityIstype hypothesisEquality equalityTransitivity equalitySymmetry thin hyp_replacement applyLambdaEquality setElimination rename extract_by_obid sqequalHypSubstitution isectElimination applyEquality independent_isectElimination lambdaEquality_alt imageElimination instantiate universeIsType universeEquality sqequalRule imageMemberEquality baseClosed productElimination independent_functionElimination natural_numberEquality inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies dependent_functionElimination Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  I].  \mforall{}[a:X(I)].  \mforall{}[u:A(a)].    (u  a  f)  =  u  supposing  f  =  1



Date html generated: 2020_05_20-PM-01_48_42
Last ObjectModification: 2020_04_17-PM-04_22_07

Theory : cubical!type!theory


Home Index