Nuprl Lemma : cube-set-restriction-when-id
∀[X:j⊢]. ∀[I:fset(ℕ)]. ∀[s:X(I)]. ∀[f:I ⟶ I].  f(s) = s ∈ X(I) supposing f = 1 ∈ I ⟶ I
Proof
Definitions occuring in Statement : 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nh-id: 1
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube-cat: CubeCat
, 
all: ∀x:A. B[x]
, 
I_cube: A(I)
, 
I_set: A(I)
, 
cube-set-restriction: f(s)
, 
psc-restriction: f(s)
Lemmas referenced : 
psc-restriction-when-id, 
cube-cat_wf, 
cat_ob_pair_lemma, 
cat_arrow_triple_lemma, 
cat_id_tuple_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
dependent_functionElimination, 
Error :memTop
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[s:X(I)].  \mforall{}[f:I  {}\mrightarrow{}  I].    f(s)  =  s  supposing  f  =  1
Date html generated:
2020_05_20-PM-01_42_27
Last ObjectModification:
2020_04_03-PM-03_34_21
Theory : cubical!type!theory
Home
Index