Nuprl Lemma : cube-set-restriction-when-id

[X:j⊢]. ∀[I:fset(ℕ)]. ∀[s:X(I)]. ∀[f:I ⟶ I].  f(s) s ∈ X(I) supposing 1 ∈ I ⟶ I


Proof




Definitions occuring in Statement :  cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) cube-set-restriction: f(s) psc-restriction: f(s)
Lemmas referenced :  psc-restriction-when-id cube-cat_wf cat_ob_pair_lemma cat_arrow_triple_lemma cat_id_tuple_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[s:X(I)].  \mforall{}[f:I  {}\mrightarrow{}  I].    f(s)  =  s  supposing  f  =  1



Date html generated: 2020_05_20-PM-01_42_27
Last ObjectModification: 2020_04_03-PM-03_34_21

Theory : cubical!type!theory


Home Index