Nuprl Lemma : psc-restriction-when-id
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[I:cat-ob(C)]. ∀[s:X(I)]. ∀[f:cat-arrow(C) I I].
  f(s) = s ∈ X(I) supposing f = (cat-id(C) I) ∈ (cat-arrow(C) I I)
Proof
Definitions occuring in Statement : 
psc-restriction: f(s)
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
, 
cat-id: cat-id(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
psc-restriction-id, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
equal_wf, 
I_set_wf, 
psc-restriction_wf, 
cat-id_wf, 
cat-arrow_wf, 
cat-ob_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
because_Cache, 
equalityIstype, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].  \mforall{}[s:X(I)].  \mforall{}[f:cat-arrow(C)  I  I].
    f(s)  =  s  supposing  f  =  (cat-id(C)  I)
Date html generated:
2020_05_20-PM-01_24_27
Last ObjectModification:
2020_04_01-AM-11_00_36
Theory : presheaf!models!of!type!theory
Home
Index