Nuprl Lemma : psc-restriction-when-id

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[I:cat-ob(C)]. ∀[s:X(I)]. ∀[f:cat-arrow(C) I].
  f(s) s ∈ X(I) supposing (cat-id(C) I) ∈ (cat-arrow(C) I)


Proof




Definitions occuring in Statement :  psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] apply: a equal: t ∈ T cat-id: cat-id(C) cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  psc-restriction-id small-category-cumulativity-2 ps_context_cumulativity2 equal_wf I_set_wf psc-restriction_wf cat-id_wf cat-arrow_wf cat-ob_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule hyp_replacement equalitySymmetry applyLambdaEquality because_Cache equalityIstype inhabitedIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[I:cat-ob(C)].  \mforall{}[s:X(I)].  \mforall{}[f:cat-arrow(C)  I  I].
    f(s)  =  s  supposing  f  =  (cat-id(C)  I)



Date html generated: 2020_05_20-PM-01_24_27
Last ObjectModification: 2020_04_01-AM-11_00_36

Theory : presheaf!models!of!type!theory


Home Index