Nuprl Lemma : cubical-type-at_wf_face-type

[J:fset(ℕ)]. ∀[rho:Top].  (𝔽(rho) ∈ Type)


Proof




Definitions occuring in Statement :  face-type: 𝔽 cubical-type-at: A(a) fset: fset(T) nat: uall: [x:A]. B[x] top: Top member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-type: 𝔽 cubical-type-at: A(a) face-presheaf: 𝔽 constant-cubical-type: (X) pi1: fst(t) all: x:A. B[x] top: Top subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a
Lemmas referenced :  lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf top_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality applyEquality instantiate lambdaEquality productEquality cumulativity universeEquality because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[J:fset(\mBbbN{})].  \mforall{}[rho:Top].    (\mBbbF{}(rho)  \mmember{}  Type)



Date html generated: 2018_05_23-AM-09_19_47
Last ObjectModification: 2017_11_10-AM-11_39_47

Theory : cubical!type!theory


Home Index