Nuprl Lemma : cubical-type-at_wf_face-type
∀[J:fset(ℕ)]. ∀[rho:Top].  (𝔽(rho) ∈ Type)
Proof
Definitions occuring in Statement : 
face-type: 𝔽
, 
cubical-type-at: A(a)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
face-type: 𝔽
, 
cubical-type-at: A(a)
, 
face-presheaf: 𝔽
, 
constant-cubical-type: (X)
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
Lemmas referenced : 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
top_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[J:fset(\mBbbN{})].  \mforall{}[rho:Top].    (\mBbbF{}(rho)  \mmember{}  Type)
Date html generated:
2018_05_23-AM-09_19_47
Last ObjectModification:
2017_11_10-AM-11_39_47
Theory : cubical!type!theory
Home
Index