Nuprl Lemma : subset-cubical-term2
∀[X,Y:j⊢].  ∀[A,B:{X ⊢ _}].  {X ⊢ _:A} ⊆r {Y ⊢ _:B} supposing A = B ∈ {X ⊢ _} supposing sub_cubical_set{j:l}(Y; X)
Proof
Definitions occuring in Statement : 
cubical-term: {X ⊢ _:A}, 
cubical-type: {X ⊢ _}, 
sub_cubical_set: Y ⊆ X, 
cubical_set: CubicalSet, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical_set: CubicalSet, 
sub_cubical_set: Y ⊆ X, 
sub_ps_context: Y ⊆ X, 
cube_set_map: A ⟶ B, 
csm-id: 1(X), 
pscm-id: 1(X)
Lemmas referenced : 
subset-presheaf-term2, 
cube-cat_wf, 
cubical-type-sq-presheaf-type, 
cubical-term-sq-presheaf-term
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[X,Y:j\mvdash{}].
    \mforall{}[A,B:\{X  \mvdash{}  \_\}].    \{X  \mvdash{}  \_:A\}  \msubseteq{}r  \{Y  \mvdash{}  \_:B\}  supposing  A  =  B  supposing  sub\_cubical\_set\{j:l\}(Y;  X)
Date html generated:
2020_05_20-PM-02_33_44
Last ObjectModification:
2020_04_03-PM-08_43_59
Theory : cubical!type!theory
Home
Index