Nuprl Lemma : subset-cubical-term2

[X,Y:j⊢].  ∀[A,B:{X ⊢ _}].  {X ⊢ _:A} ⊆{Y ⊢ _:B} supposing B ∈ {X ⊢ _} supposing sub_cubical_set{j:l}(Y; X)


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet sub_cubical_set: Y ⊆ X sub_ps_context: Y ⊆ X cube_set_map: A ⟶ B csm-id: 1(X) pscm-id: 1(X)
Lemmas referenced :  subset-presheaf-term2 cube-cat_wf cubical-type-sq-presheaf-type cubical-term-sq-presheaf-term
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[X,Y:j\mvdash{}].
    \mforall{}[A,B:\{X  \mvdash{}  \_\}].    \{X  \mvdash{}  \_:A\}  \msubseteq{}r  \{Y  \mvdash{}  \_:B\}  supposing  A  =  B  supposing  sub\_cubical\_set\{j:l\}(Y;  X)



Date html generated: 2020_05_20-PM-02_33_44
Last ObjectModification: 2020_04_03-PM-08_43_59

Theory : cubical!type!theory


Home Index