Nuprl Lemma : subset-presheaf-term2

[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].
  ∀[A,B:{X ⊢ _}].  {X ⊢ _:A} ⊆{Y ⊢ _:B} supposing B ∈ {X ⊢ _} supposing sub_ps_context{j:l}(C; Y; X)


Proof




Definitions occuring in Statement :  presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} sub_ps_context: Y ⊆ X ps_context: __⊢ uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B true: True squash: T prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  subset-presheaf-term presheaf-type_wf sub_ps_context_wf ps_context_wf small-category-cumulativity-2 small-category_wf presheaf-term_wf subset-presheaf-type subtype_rel_wf squash_wf true_wf istype-universe presheaf-type-cumulativity2 ps_context_cumulativity2 iff_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination sqequalRule axiomEquality equalityIstype inhabitedIsType isect_memberEquality_alt isectIsTypeImplies because_Cache universeIsType instantiate applyEquality natural_numberEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].
    \mforall{}[A,B:\{X  \mvdash{}  \_\}].    \{X  \mvdash{}  \_:A\}  \msubseteq{}r  \{Y  \mvdash{}  \_:B\}  supposing  A  =  B  supposing  sub\_ps\_context\{j:l\}(C;  Y;  X)



Date html generated: 2020_05_20-PM-01_35_09
Last ObjectModification: 2020_04_03-AM-01_20_27

Theory : presheaf!models!of!type!theory


Home Index