Nuprl Lemma : subset-presheaf-term2
∀[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].
  ∀[A,B:{X ⊢ _}].  {X ⊢ _:A} ⊆r {Y ⊢ _:B} supposing A = B ∈ {X ⊢ _} supposing sub_ps_context{j:l}(C; Y; X)
Proof
Definitions occuring in Statement : 
presheaf-term: {X ⊢ _:A}
, 
presheaf-type: {X ⊢ _}
, 
sub_ps_context: Y ⊆ X
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
subset-presheaf-term, 
presheaf-type_wf, 
sub_ps_context_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf, 
presheaf-term_wf, 
subset-presheaf-type, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
istype-universe, 
presheaf-type-cumulativity2, 
ps_context_cumulativity2, 
iff_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
axiomEquality, 
equalityIstype, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
because_Cache, 
universeIsType, 
instantiate, 
applyEquality, 
natural_numberEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].
    \mforall{}[A,B:\{X  \mvdash{}  \_\}].    \{X  \mvdash{}  \_:A\}  \msubseteq{}r  \{Y  \mvdash{}  \_:B\}  supposing  A  =  B  supposing  sub\_ps\_context\{j:l\}(C;  Y;  X)
Date html generated:
2020_05_20-PM-01_35_09
Last ObjectModification:
2020_04_03-AM-01_20_27
Theory : presheaf!models!of!type!theory
Home
Index