Nuprl Lemma : sub_ps_context_wf
∀[C:SmallCategory]. ∀[Y,X:ps_context{j:l}(C)].  (sub_ps_context{j:l}(C; Y; X) ∈ 𝕌{[i | j'']})
Proof
Definitions occuring in Statement : 
sub_ps_context: Y ⊆ X
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
sub_ps_context: Y ⊆ X
, 
pscm-id: 1(X)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
equal-wf-base, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf, 
psc_map_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
because_Cache, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
baseClosed
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Y,X:ps\_context\{j:l\}(C)].    (sub\_ps\_context\{j:l\}(C;  Y;  X)  \mmember{}  \mBbbU{}\{[i  |  j'']\})
Date html generated:
2020_05_20-PM-01_24_41
Last ObjectModification:
2020_04_01-AM-09_52_03
Theory : presheaf!models!of!type!theory
Home
Index