Nuprl Lemma : sub_ps_context_wf

[C:SmallCategory]. ∀[Y,X:ps_context{j:l}(C)].  (sub_ps_context{j:l}(C; Y; X) ∈ 𝕌{[i j'']})


Proof




Definitions occuring in Statement :  sub_ps_context: Y ⊆ X ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T universe: Type small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] sub_ps_context: Y ⊆ X pscm-id: 1(X) member: t ∈ T subtype_rel: A ⊆B prop:
Lemmas referenced :  equal-wf-base ps_context_wf small-category-cumulativity-2 small-category_wf psc_map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid because_Cache universeIsType sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule baseClosed

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Y,X:ps\_context\{j:l\}(C)].    (sub\_ps\_context\{j:l\}(C;  Y;  X)  \mmember{}  \mBbbU{}\{[i  |  j'']\})



Date html generated: 2020_05_20-PM-01_24_41
Last ObjectModification: 2020_04_01-AM-09_52_03

Theory : presheaf!models!of!type!theory


Home Index