Nuprl Lemma : subset-presheaf-term

[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].
  ∀[A:{X ⊢ _}]. ({X ⊢ _:A} ⊆{Y ⊢ _:A}) supposing sub_ps_context{j:l}(C; Y; X)


Proof




Definitions occuring in Statement :  presheaf-term: {X ⊢ _:A} presheaf-type: {X ⊢ _} sub_ps_context: Y ⊆ X ps_context: __⊢ uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B sub_ps_context: Y ⊆ X guard: {T} squash: T true: True prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q pscm-id: 1(X) pscm-ap-term: (t)s pscm-ap: (s)x presheaf-term-at: u(a) all: x:A. B[x]
Lemmas referenced :  subset-presheaf-type pscm-ap-term_wf presheaf-term_wf presheaf-type_wf sub_ps_context_wf ps_context_wf small-category-cumulativity-2 small-category_wf I_set_wf cat-ob_wf presheaf-term-equal subtype_rel-equal pscm-ap-type_wf equal_wf pscm-ap-id-type subtype_rel_transitivity subtype_rel_self iff_weakening_equal subset-I_set presheaf-term-at_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination lambdaEquality_alt equalityTransitivity equalitySymmetry universeIsType sqequalRule axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate applyEquality because_Cache functionExtensionality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination dependent_functionElimination lambdaFormation_alt equalityIstype

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].
    \mforall{}[A:\{X  \mvdash{}  \_\}].  (\{X  \mvdash{}  \_:A\}  \msubseteq{}r  \{Y  \mvdash{}  \_:A\})  supposing  sub\_ps\_context\{j:l\}(C;  Y;  X)



Date html generated: 2020_05_20-PM-01_35_05
Last ObjectModification: 2020_04_03-AM-01_16_04

Theory : presheaf!models!of!type!theory


Home Index