Nuprl Lemma : presheaf-term-equal
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[z:I:cat-ob(C) ⟶ a:X(I) ⟶ A(a)].
  u = z ∈ {X ⊢ _:A} supposing u = z ∈ (I:cat-ob(C) ⟶ a:X(I) ⟶ A(a))
Proof
Definitions occuring in Statement : 
presheaf-term: {X ⊢ _:A}
, 
presheaf-type-at: A(a)
, 
presheaf-type: {X ⊢ _}
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
presheaf-term: {X ⊢ _:A}
, 
all: ∀x:A. B[x]
, 
presheaf-term-at: u(a)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
presheaf-term-at-morph, 
I_set_wf, 
cat-arrow_wf, 
cat-ob_wf, 
presheaf-type-at_wf, 
psc-restriction_wf, 
presheaf-type-ap-morph_wf, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
presheaf-term_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
hypothesis, 
lambdaFormation_alt, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
universeIsType, 
applyEquality, 
inhabitedIsType, 
functionIsType, 
because_Cache, 
equalityIstype, 
instantiate, 
setElimination, 
rename, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[z:I:cat-ob(C)
                                                                                                                                                              {}\mrightarrow{}  a:X(I)
                                                                                                                                                              {}\mrightarrow{}  A(a)].
    u  =  z  supposing  u  =  z
Date html generated:
2020_05_20-PM-01_26_44
Last ObjectModification:
2020_04_01-PM-01_54_42
Theory : presheaf!models!of!type!theory
Home
Index