Nuprl Lemma : presheaf-term-equal

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[z:I:cat-ob(C) ⟶ a:X(I) ⟶ A(a)].
  z ∈ {X ⊢ _:A} supposing z ∈ (I:cat-ob(C) ⟶ a:X(I) ⟶ A(a))


Proof




Definitions occuring in Statement :  presheaf-term: {X ⊢ _:A} presheaf-type-at: A(a) presheaf-type: {X ⊢ _} I_set: A(I) ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] equal: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a presheaf-term: {X ⊢ _:A} all: x:A. B[x] presheaf-term-at: u(a) subtype_rel: A ⊆B
Lemmas referenced :  presheaf-term-at-morph I_set_wf cat-arrow_wf cat-ob_wf presheaf-type-at_wf psc-restriction_wf presheaf-type-ap-morph_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-term_wf presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt hypothesis lambdaFormation_alt sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality universeIsType applyEquality inhabitedIsType functionIsType because_Cache equalityIstype instantiate setElimination rename isect_memberEquality_alt axiomEquality isectIsTypeImplies

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[z:I:cat-ob(C)
                                                                                                                                                              {}\mrightarrow{}  a:X(I)
                                                                                                                                                              {}\mrightarrow{}  A(a)].
    u  =  z  supposing  u  =  z



Date html generated: 2020_05_20-PM-01_26_44
Last ObjectModification: 2020_04_01-PM-01_54_42

Theory : presheaf!models!of!type!theory


Home Index