Nuprl Lemma : presheaf-type-ap-morph_wf
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[I,J:cat-ob(C)]. ∀[f:cat-arrow(C) J I]. ∀[a:X(I)].
∀[u:A(a)].
  ((u a f) ∈ A(f(a)))
Proof
Definitions occuring in Statement : 
presheaf-type-ap-morph: (u a f)
, 
presheaf-type-at: A(a)
, 
presheaf-type: {X ⊢ _}
, 
psc-restriction: f(s)
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
presheaf-type-ap-morph: (u a f)
, 
presheaf-type: {X ⊢ _}
, 
presheaf-type-at: A(a)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
presheaf-type-at_wf, 
I_set_wf, 
cat-arrow_wf, 
cat-ob_wf, 
presheaf-type_wf, 
ps_context_wf, 
small-category-cumulativity-2, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
extract_by_obid, 
isectElimination, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[I,J:cat-ob(C)].  \mforall{}[f:cat-arrow(C)  J  I].
\mforall{}[a:X(I)].  \mforall{}[u:A(a)].
    ((u  a  f)  \mmember{}  A(f(a)))
Date html generated:
2020_05_20-PM-01_25_54
Last ObjectModification:
2020_04_01-AM-11_51_03
Theory : presheaf!models!of!type!theory
Home
Index