Nuprl Lemma : presheaf-term-at_wf

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[I:cat-ob(C)]. ∀[a:X(I)].  (u(a) ∈ A(a))


Proof




Definitions occuring in Statement :  presheaf-term-at: u(a) presheaf-term: {X ⊢ _:A} presheaf-type-at: A(a) presheaf-type: {X ⊢ _} I_set: A(I) ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-term-at: u(a) presheaf-term: {X ⊢ _:A} subtype_rel: A ⊆B
Lemmas referenced :  I_set_wf cat-ob_wf presheaf-term_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule applyEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:cat-ob(C)].
\mforall{}[a:X(I)].
    (u(a)  \mmember{}  A(a))



Date html generated: 2020_05_20-PM-01_26_38
Last ObjectModification: 2020_04_01-PM-01_51_03

Theory : presheaf!models!of!type!theory


Home Index