Nuprl Lemma : pscm-ap-id-type

[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}].  ((A)1(Gamma) A ∈ {Gamma ⊢ _})


Proof




Definitions occuring in Statement :  pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} pscm-id: 1(X) ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} and: P ∧ Q all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q ps_context: __⊢ cat-functor: Functor(C1;C2) pscm-id: 1(X) pscm-ap-type: (AF)s pscm-ap: (s)x cat-ob: cat-ob(C) pi1: fst(t) type-cat: TypeCat
Lemmas referenced :  cat-ob_wf I_set_wf cat-id_wf subtype_rel-equal psc-restriction_wf equal_wf squash_wf true_wf istype-universe psc-restriction-id small-category-cumulativity-2 ps_context_cumulativity2 subtype_rel_self iff_weakening_equal cat-arrow_wf cat-comp_wf psc-restriction-comp presheaf-type_wf ps_context_wf small-category_wf I_set_pair_redex_lemma psc_restriction_pair_lemma op-cat_wf cat_ob_op_lemma eta_conv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesis productElimination sqequalRule productIsType functionIsType universeIsType extract_by_obid isectElimination hypothesisEquality applyEquality equalityIstype because_Cache instantiate independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType Error :memTop,  dependent_pairEquality_alt functionExtensionality_alt

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((A)1(Gamma)  =  A)



Date html generated: 2020_05_20-PM-01_26_20
Last ObjectModification: 2020_04_01-AM-11_00_56

Theory : presheaf!models!of!type!theory


Home Index