Nuprl Lemma : pscm-ap-id-type
∀[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}].  ((A)1(Gamma) = A ∈ {Gamma ⊢ _})
Proof
Definitions occuring in Statement : 
pscm-ap-type: (AF)s, 
presheaf-type: {X ⊢ _}, 
pscm-id: 1(X), 
ps_context: __⊢, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
presheaf-type: {X ⊢ _}, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
ps_context: __⊢, 
cat-functor: Functor(C1;C2), 
pscm-id: 1(X), 
pscm-ap-type: (AF)s, 
pscm-ap: (s)x, 
cat-ob: cat-ob(C), 
pi1: fst(t), 
type-cat: TypeCat
Lemmas referenced : 
cat-ob_wf, 
I_set_wf, 
cat-id_wf, 
subtype_rel-equal, 
psc-restriction_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
psc-restriction-id, 
small-category-cumulativity-2, 
ps_context_cumulativity2, 
subtype_rel_self, 
iff_weakening_equal, 
cat-arrow_wf, 
cat-comp_wf, 
psc-restriction-comp, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf, 
I_set_pair_redex_lemma, 
psc_restriction_pair_lemma, 
op-cat_wf, 
cat_ob_op_lemma, 
eta_conv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesis, 
productElimination, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
equalityIstype, 
because_Cache, 
instantiate, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
Error :memTop, 
dependent_pairEquality_alt, 
functionExtensionality_alt
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((A)1(Gamma)  =  A)
Date html generated:
2020_05_20-PM-01_26_20
Last ObjectModification:
2020_04_01-AM-11_00_56
Theory : presheaf!models!of!type!theory
Home
Index