Nuprl Lemma : subset-I_set

[C:SmallCategory]. ∀[X,Y:ps_context{j:l}(C)].  ∀I:cat-ob(C). (Y(I) ⊆X(I)) supposing sub_ps_context{j:l}(C; Y; X)


Proof




Definitions occuring in Statement :  sub_ps_context: Y ⊆ X I_set: A(I) ps_context: __⊢ uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B sub_ps_context: Y ⊆ X psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) squash: T small-category: SmallCategory spreadn: spread4 and: P ∧ Q pscm-id: 1(X) type-cat: TypeCat cat-arrow: cat-arrow(C) op-cat: op-cat(C) cat-ob: cat-ob(C) pi2: snd(t) pi1: fst(t) I_set: A(I)
Lemmas referenced :  sub_ps_context_wf cat_ob_pair_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution applyLambdaEquality setElimination thin rename hypothesis sqequalRule imageMemberEquality hypothesisEquality baseClosed imageElimination because_Cache lambdaEquality_alt dependent_functionElimination axiomEquality functionIsTypeImplies inhabitedIsType universeIsType extract_by_obid isectElimination isect_memberEquality_alt isectIsTypeImplies productElimination applyEquality Error :memTop,  equalityTransitivity equalitySymmetry

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y:ps\_context\{j:l\}(C)].
    \mforall{}I:cat-ob(C).  (Y(I)  \msubseteq{}r  X(I))  supposing  sub\_ps\_context\{j:l\}(C;  Y;  X)



Date html generated: 2020_05_20-PM-01_24_54
Last ObjectModification: 2020_04_01-AM-11_00_44

Theory : presheaf!models!of!type!theory


Home Index