Nuprl Lemma : pscm-ap-type_wf

[C:SmallCategory]. ∀[Gamma,Delta:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}]. ∀[s:psc_map{j:l}(C; Delta; Gamma)].
  ((A)s ∈ Delta ⊢ )


Proof




Definitions occuring in Statement :  pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T presheaf-type: {X ⊢ _} pscm-ap-type: (AF)s and: P ∧ Q subtype_rel: A ⊆B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat all: x:A. B[x] cat-comp: cat-comp(C) compose: g uimplies: supposing a squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cand: c∧ B prop:
Lemmas referenced :  pscm-ap_wf ps_context_cumulativity2 small-category-cumulativity-2 subtype_rel_self psc_map_wf I_set_wf subtype_rel-equal psc-restriction_wf equal_wf pscm-ap-restriction iff_weakening_equal cat-arrow_wf cat-comp_wf squash_wf true_wf psc-restriction-comp cat-id_wf psc-restriction-id presheaf-type_wf ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut promote_hyp sqequalHypSubstitution setElimination thin rename productElimination sqequalRule dependent_set_memberEquality_alt dependent_pairEquality_alt lambdaEquality_alt applyEquality hypothesisEquality instantiate extract_by_obid isectElimination because_Cache hypothesis universeIsType independent_isectElimination imageElimination universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination functionIsType lambdaFormation_alt independent_pairFormation productIsType equalityIstype axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma,Delta:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[s:psc\_map\{j:l\}(C;
                                                                                                                                                                                    Delta;
                                                                                                                                                                                    Gamma)].
    ((A)s  \mmember{}  Delta  \mvdash{}  )



Date html generated: 2020_05_20-PM-01_26_12
Last ObjectModification: 2020_04_01-AM-11_00_55

Theory : presheaf!models!of!type!theory


Home Index