Nuprl Lemma : nc-s_wf
∀[I,J:fset(ℕ)].  s ∈ I ⟶ J supposing J ⊆ I
Proof
Definitions occuring in Statement : 
nc-s: s
, 
names-hom: I ⟶ J
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
names-hom: I ⟶ J
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nc-s: s
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
dM_inc_wf, 
names-subtype, 
names_wf, 
f-subset_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
because_Cache, 
natural_numberEquality, 
isect_memberEquality
Latex:
\mforall{}[I,J:fset(\mBbbN{})].    s  \mmember{}  I  {}\mrightarrow{}  J  supposing  J  \msubseteq{}  I
Date html generated:
2016_05_18-PM-00_00_32
Last ObjectModification:
2015_12_28-PM-03_06_06
Theory : cubical!type!theory
Home
Index