Nuprl Lemma : nc-s_wf

[I,J:fset(ℕ)].  s ∈ I ⟶ supposing J ⊆ I


Proof




Definitions occuring in Statement :  nc-s: s names-hom: I ⟶ J f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  names-hom: I ⟶ J uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nc-s: s subtype_rel: A ⊆B prop: nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  dM_inc_wf names-subtype names_wf f-subset_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality independent_isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry intEquality because_Cache natural_numberEquality isect_memberEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].    s  \mmember{}  I  {}\mrightarrow{}  J  supposing  J  \msubseteq{}  I



Date html generated: 2016_05_18-PM-00_00_32
Last ObjectModification: 2015_12_28-PM-03_06_06

Theory : cubical!type!theory


Home Index