Nuprl Lemma : names-subtype

[I,J:fset(ℕ)].  names(I) ⊆names(J) supposing I ⊆ J


Proof




Definitions occuring in Statement :  names: names(I) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a names: names(I) so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: so_apply: x[s] prop: all: x:A. B[x] implies:  Q f-subset: xs ⊆ ys
Lemmas referenced :  subtype_rel_sets nat_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self f-subset_wf fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache lambdaEquality applyEquality intEquality independent_isectElimination natural_numberEquality hypothesisEquality setElimination rename setEquality lambdaFormation dependent_functionElimination axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I,J:fset(\mBbbN{})].    names(I)  \msubseteq{}r  names(J)  supposing  I  \msubseteq{}  J



Date html generated: 2016_05_18-AM-11_56_15
Last ObjectModification: 2015_12_28-PM-03_09_01

Theory : cubical!type!theory


Home Index