Nuprl Lemma : names-subtype
∀[I,J:fset(ℕ)].  names(I) ⊆r names(J) supposing I ⊆ J
Proof
Definitions occuring in Statement : 
names: names(I)
, 
f-subset: xs ⊆ ys
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
names: names(I)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
f-subset: xs ⊆ ys
Lemmas referenced : 
subtype_rel_sets, 
nat_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
f-subset_wf, 
fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
lambdaEquality, 
applyEquality, 
intEquality, 
independent_isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I,J:fset(\mBbbN{})].    names(I)  \msubseteq{}r  names(J)  supposing  I  \msubseteq{}  J
Date html generated:
2016_05_18-AM-11_56_15
Last ObjectModification:
2015_12_28-PM-03_09_01
Theory : cubical!type!theory
Home
Index