Step
*
of Lemma
compU_wf
No Annotations
∀[G:j⊢]. (compU() ∈ G ⊢ Compositon'(c𝕌))
BY
{ (Auto
THEN MemTypeCD
THEN Auto
THEN RepeatFor 5 ((D 0 THENA Auto))
THEN (RWO "csm-cubical-universe" 0 THENA Auto)
THEN (InstLemma `cubical-term_wf` [parm{j};⌜parm{i'}⌝;⌜H, phi.𝕀⌝;⌜c𝕌⌝]⋅ THENA Auto)
THEN (D 0 THENA Auto)
THEN Unfold `constrained-cubical-term` 0
THEN (RWO "csm-cubical-universe" 0 THENA Auto)
THEN (InstLemma `cubical-term_wf` [⌜parm{j}⌝;⌜parm{i'}⌝;⌜H⌝;⌜c𝕌⌝]⋅ THENA Auto)
THEN (InstLemma `cubical-term_wf` [parm{j};⌜parm{i'}⌝;⌜H, phi⌝;⌜c𝕌⌝]⋅ THENA Auto)) }
1
1. G : CubicalSet{j}
2. H : CubicalSet{j}
3. K : CubicalSet{j}
4. tau : K j⟶ H
5. sigma : H.𝕀 j⟶ G
6. phi : {H ⊢ _:𝔽}
7. {H, phi.𝕀 ⊢ _:c𝕌} ∈ 𝕌{[i' | j']}
8. u : {H, phi.𝕀 ⊢ _:c𝕌}
9. {H ⊢ _:c𝕌} ∈ 𝕌{[i' | j']}
10. {H, phi ⊢ _:c𝕌} ∈ 𝕌{[i' | j']}
⊢ ∀a0:{a:{H ⊢ _:c𝕌}| (u)[0(𝕀)] = a ∈ {H, phi ⊢ _:c𝕌}}
((compU() H sigma phi u a0)tau
= (compU() K sigma o tau+ (phi)tau (u)tau+ (a0)tau)
∈ {a:{K ⊢ _:(c𝕌)tau}| ((u)[1(𝕀)])tau = a ∈ {K, (phi)tau ⊢ _:(c𝕌)tau}} )
Latex:
Latex:
No Annotations
\mforall{}[G:j\mvdash{}]. (compU() \mmember{} G \mvdash{} Compositon'(c\mBbbU{}))
By
Latex:
(Auto
THEN MemTypeCD
THEN Auto
THEN RepeatFor 5 ((D 0 THENA Auto))
THEN (RWO "csm-cubical-universe" 0 THENA Auto)
THEN (InstLemma `cubical-term\_wf` [parm\{j\};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}H, phi.\mBbbI{}\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (D 0 THENA Auto)
THEN Unfold `constrained-cubical-term` 0
THEN (RWO "csm-cubical-universe" 0 THENA Auto)
THEN (InstLemma `cubical-term\_wf` [\mkleeneopen{}parm\{j\}\mkleeneclose{};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}H\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (InstLemma `cubical-term\_wf` [parm\{j\};\mkleeneopen{}parm\{i'\}\mkleeneclose{};\mkleeneopen{}H, phi\mkleeneclose{};\mkleeneopen{}c\mBbbU{}\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index