Nuprl Lemma : compU_wf

[G:j⊢]. (compU() ∈ G ⊢ Compositon'(c𝕌))


Proof




Definitions occuring in Statement :  compU: compU() cubical-universe: c𝕌 composition-structure: Gamma ⊢ Compositon(A) cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T composition-structure: Gamma ⊢ Compositon(A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} prop: compU: compU() squash: T true: True uimplies: supposing a subtype_rel: A ⊆B same-cubical-type: Gamma ⊢ B interval-1: 1(𝕀) csm-id-adjoin: [u] csm-ap-term: (t)s interval-type: 𝕀 csm+: tau+ csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-type: (AF)s csm-comp: F pi2: snd(t) compose: g pi1: fst(t) implies:  Q cubical-type: {X ⊢ _} interval-0: 0(𝕀) rev-type-line: (A)- interval-rev: 1-(r) cubical-term-at: u(a) guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q universe-comp-op: compOp(t) rev-type-line-comp: (cA)- csm-composition: (comp)sigma csm-comp-structure: (cA)tau composition-function: composition-function{j:l,i:l}(Gamma;A)
Lemmas referenced :  compU_wf1 csm-cubical-universe cubical-term_wf cube-context-adjoin_wf context-subset_wf interval-type_wf cubical-universe_wf istype-cubical-term face-type_wf cube_set_map_wf uniform-comp-function_wf cubical_set_wf rev-type-line_wf universe-decode_wf equivU_wf rev-type-line-comp_wf universe-comp-op_wf csm-ap-term_wf csm-id-adjoin_wf interval-1_wf csm-universe-decode cubical-equiv_wf squash_wf true_wf cubical-type_wf cubical-term-eqcd equiv-fun_wf thin-context-subset glue-type_wf glue-type-constraint comp-op-to-comp-fun_wf2 cubical_set_cumulativity-i-j csm-composition_wf glue-comp_wf2 rev-type-line-0 rev-type-line-1 cubical-universe-cumulativity csm-universe-encode comp-fun-to-comp-op_wf csm-ap-type_wf csm-face-type context-subset-map csm-equivU dma-neg-dM0 dma-neg-dM1 istype-cubical-universe-term csm-ap-term-universe composition-op_wf cubical-type-cumulativity2 equal_wf istype-universe csm-rev-type-line csm+_wf_interval subtype_rel_self iff_weakening_equal csm-equiv-fun csm-glue-type cubical-fun_wf universe-encode_wf csm-glue-comp subtype_rel-equal csm-comp-structure_wf cube_set_map_cumulativity-i-j csm-universe-comp-op csm-comp-op-to-comp-fun-sq composition-structure_wf csm-comp-fun-to-comp-op subset-cubical-term context-subset-is-subset csm-id-adjoin_wf-interval-1 interval-0_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation_alt sqequalRule Error :memTop,  because_Cache instantiate universeIsType inhabitedIsType axiomEquality equalityTransitivity equalitySymmetry rename setElimination applyLambdaEquality applyEquality lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed independent_isectElimination cumulativity universeEquality hyp_replacement dependent_functionElimination equalityIstype independent_functionElimination productElimination independent_pairFormation productIsType functionExtensionality setEquality setIsType

Latex:
\mforall{}[G:j\mvdash{}].  (compU()  \mmember{}  G  \mvdash{}  Compositon'(c\mBbbU{}))



Date html generated: 2020_05_20-PM-07_23_17
Last ObjectModification: 2020_04_28-PM-00_05_23

Theory : cubical!type!theory


Home Index