Nuprl Lemma : cubical-term-eqcd

[X:j⊢]. ∀[A,B:{X ⊢ _}].  {X ⊢ _:A} {X ⊢ _:B} ∈ 𝕌{[i j']} supposing B ∈ {X ⊢ _}


Proof




Definitions occuring in Statement :  cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut equalitySymmetry dependent_set_memberEquality_alt hypothesis independent_pairFormation equalityTransitivity sqequalRule productIsType equalityIstype inhabitedIsType hypothesisEquality applyLambdaEquality setElimination thin rename sqequalHypSubstitution productElimination instantiate extract_by_obid isectElimination applyEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies because_Cache

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].    \{X  \mvdash{}  \_:A\}  =  \{X  \mvdash{}  \_:B\}  supposing  A  =  B



Date html generated: 2020_05_20-PM-01_51_21
Last ObjectModification: 2020_04_18-AM-10_13_33

Theory : cubical!type!theory


Home Index