Nuprl Lemma : cubical-term-eqcd
∀[X:j⊢]. ∀[A,B:{X ⊢ _}].  {X ⊢ _:A} = {X ⊢ _:B} ∈ 𝕌{[i | j']} supposing A = B ∈ {X ⊢ _}
Proof
Definitions occuring in Statement : 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical-term_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
hypothesis, 
independent_pairFormation, 
equalityTransitivity, 
sqequalRule, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
thin, 
rename, 
sqequalHypSubstitution, 
productElimination, 
instantiate, 
extract_by_obid, 
isectElimination, 
applyEquality, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
because_Cache
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].    \{X  \mvdash{}  \_:A\}  =  \{X  \mvdash{}  \_:B\}  supposing  A  =  B
Date html generated:
2020_05_20-PM-01_51_21
Last ObjectModification:
2020_04_18-AM-10_13_33
Theory : cubical!type!theory
Home
Index