Nuprl Lemma : rev-type-line-1

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}].  (((A)-)[1(𝕀)] (A)[0(𝕀)])


Proof




Definitions occuring in Statement :  rev-type-line: (A)- interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev-type-line: (A)- interval-rev: 1-(r) cubical-type: {X ⊢ _} interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap-type: (AF)s cc-snd: q cubical-term-at: u(a) cc-fst: p csm-adjoin: (s;u) interval-1: 1(𝕀) csm-id: 1(X) csm-ap: (s)x pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B
Lemmas referenced :  dma-neg-dM1 cubical-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction axiomSqEquality sqequalHypSubstitution setElimination thin rename cut productElimination sqequalRule extract_by_obid isectElimination Error :memTop,  hypothesis because_Cache universeIsType instantiate hypothesisEquality applyEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].    (((A)-)[1(\mBbbI{})]  \msim{}  (A)[0(\mBbbI{})])



Date html generated: 2020_05_20-PM-04_17_16
Last ObjectModification: 2020_04_10-AM-04_49_30

Theory : cubical!type!theory


Home Index