Nuprl Lemma : rev-type-line-comp_wf

[Gamma:j⊢]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ CompOp(A)].  ((cA)- ∈ Gamma.𝕀 ⊢ CompOp((A)-))


Proof




Definitions occuring in Statement :  rev-type-line-comp: (cA)- rev-type-line: (A)- composition-op: Gamma ⊢ CompOp(A) interval-type: 𝕀 cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev-type-line-comp: (cA)- rev-type-line: (A)- subtype_rel: A ⊆B cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X)
Lemmas referenced :  csm-composition_wf cube-context-adjoin_wf interval-type_wf csm-adjoin_wf cc-fst_wf csm-interval-type interval-rev_wf cc-snd_wf composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache hypothesis sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry axiomEquality universeIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  CompOp(A)].    ((cA)-  \mmember{}  Gamma.\mBbbI{}  \mvdash{}  CompOp((A)-))



Date html generated: 2020_05_20-PM-04_17_47
Last ObjectModification: 2020_04_10-AM-04_51_45

Theory : cubical!type!theory


Home Index