Nuprl Lemma : csm-composition_wf
∀[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].
  ((comp)sigma ∈ Delta ⊢ CompOp((A)sigma))
Proof
Definitions occuring in Statement : 
csm-composition: (comp)sigma
, 
composition-op: Gamma ⊢ CompOp(A)
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
csm-composition: (comp)sigma
, 
composition-op: Gamma ⊢ CompOp(A)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cube_set_map: A ⟶ B
, 
psc_map: A ⟶ B
, 
nat-trans: nat-trans(C;D;F;G)
, 
cat-ob: cat-ob(C)
, 
pi1: fst(t)
, 
op-cat: op-cat(C)
, 
spreadn: spread4, 
cube-cat: CubeCat
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
type-cat: TypeCat
, 
names-hom: I ⟶ J
, 
cat-comp: cat-comp(C)
, 
compose: f o g
, 
composition-uniformity: composition-uniformity(Gamma;A;comp)
, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)
, 
csm-ap: (s)x
, 
context-map: <rho>
, 
subset-iota: iota
, 
csm-comp: G o F
, 
functor-arrow: arrow(F)
, 
cube-set-restriction: f(s)
, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
, 
sq_stable: SqStable(P)
Lemmas referenced : 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
csm-ap_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
I_cube_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
face-presheaf_wf2, 
cubical-term_wf, 
cubical-subset_wf, 
cube-set-restriction_wf, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
cubical-path-0_wf, 
cubical-path-1_wf, 
subtype_rel_dep_function, 
squash_wf, 
true_wf, 
equal_wf, 
istype-universe, 
csm-ap-comp-type, 
subtype_rel_self, 
iff_weakening_equal, 
csm-comp-context-map, 
cubical-type-cumulativity, 
csm-cubical-path-0-subtype, 
csm-cubical-path-1-subtype, 
composition-uniformity_wf, 
cubical-term-eqcd, 
istype-cubical-term, 
names-hom_wf, 
subtype_rel-equal, 
cubical-type-at_wf, 
nc-0_wf, 
csm-ap-type-at, 
csm-ap-restriction, 
cubical-path-condition_wf, 
subtype_rel_wf, 
cubical-subset-I_cube-member, 
nh-comp_wf, 
cube-set-restriction-comp, 
cubical-type-ap-morph_wf, 
istype-cubical-type-at, 
csm-cubical-type-ap-morph, 
nc-1_wf, 
cubical-subset-term-trans, 
nc-e'_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
nc-e'-lemma2, 
cubical-path-0-ap-morph, 
sq_stable__cubical-path-condition, 
nc-e'-lemma1, 
subtype_rel_weakening, 
ext-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
instantiate, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaEquality_alt, 
dependent_set_memberEquality_alt, 
because_Cache, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
setIsType, 
functionIsType, 
intEquality, 
cumulativity, 
functionEquality, 
universeEquality, 
lambdaFormation_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
functionExtensionality, 
hyp_replacement, 
equalityIstype, 
promote_hyp
Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].
    ((comp)sigma  \mmember{}  Delta  \mvdash{}  CompOp((A)sigma))
Date html generated:
2020_05_20-PM-03_51_11
Last ObjectModification:
2020_04_20-PM-05_12_18
Theory : cubical!type!theory
Home
Index