Nuprl Lemma : csm-composition_wf

[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[comp:Gamma ⊢ CompOp(A)].
  ((comp)sigma ∈ Delta ⊢ CompOp((A)sigma))


Proof




Definitions occuring in Statement :  csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) subtype_rel: A ⊆B nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cube-cat: CubeCat fset: fset(T) quotient: x,y:A//B[x; y] cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat names-hom: I ⟶ J cat-comp: cat-comp(C) compose: g composition-uniformity: composition-uniformity(Gamma;A;comp) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) csm-ap: (s)x context-map: <rho> subset-iota: iota csm-comp: F functor-arrow: arrow(F) cube-set-restriction: f(s) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) sq_stable: SqStable(P)
Lemmas referenced :  composition-op_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-type_wf cube_set_map_wf cubical_set_wf csm-ap_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le I_cube_wf istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf face-presheaf_wf2 cubical-term_wf cubical-subset_wf cube-set-restriction_wf nc-s_wf f-subset-add-name csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf cubical-path-0_wf cubical-path-1_wf subtype_rel_dep_function squash_wf true_wf equal_wf istype-universe csm-ap-comp-type subtype_rel_self iff_weakening_equal csm-comp-context-map cubical-type-cumulativity csm-cubical-path-0-subtype csm-cubical-path-1-subtype composition-uniformity_wf cubical-term-eqcd istype-cubical-term names-hom_wf subtype_rel-equal cubical-type-at_wf nc-0_wf csm-ap-type-at csm-ap-restriction cubical-path-condition_wf subtype_rel_wf cubical-subset-I_cube-member nh-comp_wf cube-set-restriction-comp cubical-type-ap-morph_wf istype-cubical-type-at csm-cubical-type-ap-morph nc-1_wf cubical-subset-term-trans nc-e'_wf subset-cubical-term2 sub_cubical_set_self nc-e'-lemma2 cubical-path-0-ap-morph sq_stable__cubical-path-condition nc-e'-lemma1 subtype_rel_weakening ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename hypothesis axiomEquality equalityTransitivity equalitySymmetry universeIsType instantiate extract_by_obid isectElimination hypothesisEquality applyEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaEquality_alt dependent_set_memberEquality_alt because_Cache dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType functionIsType intEquality cumulativity functionEquality universeEquality lambdaFormation_alt imageElimination imageMemberEquality baseClosed productElimination functionExtensionality hyp_replacement equalityIstype promote_hyp

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:Gamma  \mvdash{}  CompOp(A)].
    ((comp)sigma  \mmember{}  Delta  \mvdash{}  CompOp((A)sigma))



Date html generated: 2020_05_20-PM-03_51_11
Last ObjectModification: 2020_04_20-PM-05_12_18

Theory : cubical!type!theory


Home Index