Nuprl Lemma : cubical-subset-I_cube-member
∀[I:fset(ℕ)]. ∀[psi:𝔽(I)]. ∀[J:fset(ℕ)]. ∀[f:I,psi(J)].  ((f ∈ J ⟶ I) ∧ (psi f) = 1)
Proof
Definitions occuring in Statement : 
cubical-subset: I,psi
, 
name-morph-satisfies: (psi f) = 1
, 
face-presheaf: 𝔽
, 
I_cube: A(I)
, 
names-hom: I ⟶ J
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
cubical-subset: I,psi
, 
I_cube: A(I)
, 
names-cat: NamesCat
, 
rep-sub-sheaf: rep-sub-sheaf(C;X;P)
, 
functor-ob: functor-ob(F)
, 
pi1: fst(t)
, 
cat-arrow: cat-arrow(C)
, 
pi2: snd(t)
, 
name-morph-satisfies: (psi f) = 1
Lemmas referenced : 
I_cube_wf, 
cubical-subset_wf, 
fset_wf, 
nat_wf, 
face-presheaf_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[psi:\mBbbF{}(I)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:I,psi(J)].    ((f  \mmember{}  J  {}\mrightarrow{}  I)  \mwedge{}  (psi  f)  =  1)
Date html generated:
2016_05_18-PM-01_37_00
Last ObjectModification:
2015_12_28-PM-02_59_04
Theory : cubical!type!theory
Home
Index