Nuprl Lemma : csm-ap-comp-type

[Gamma,Delta,Z:j⊢]. ∀[s1:Z j⟶ Delta]. ∀[s2:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}].  ((A)s2 s1 ((A)s2)s1 ∈ {Z ⊢ _})


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B csm-ap-type: (AF)s pscm-ap-type: (AF)s csm-ap: (s)x pscm-ap: (s)x csm-comp: F pscm-comp: F
Lemmas referenced :  pscm-ap-comp-type cube-cat_wf cubical-type-sq-presheaf-type
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule Error :memTop

Latex:
\mforall{}[Gamma,Delta,Z:j\mvdash{}].  \mforall{}[s1:Z  j{}\mrightarrow{}  Delta].  \mforall{}[s2:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    ((A)s2  o  s1  =  ((A)s2)s1)



Date html generated: 2020_05_20-PM-01_50_05
Last ObjectModification: 2020_04_03-PM-08_27_18

Theory : cubical!type!theory


Home Index