Nuprl Lemma : csm-ap-comp-type
∀[Gamma,Delta,Z:j⊢]. ∀[s1:Z j⟶ Delta]. ∀[s2:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}].  ((A)s2 o s1 = ((A)s2)s1 ∈ {Z ⊢ _})
Proof
Definitions occuring in Statement : 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical_set: CubicalSet
, 
cube_set_map: A ⟶ B
, 
csm-ap-type: (AF)s
, 
pscm-ap-type: (AF)s
, 
csm-ap: (s)x
, 
pscm-ap: (s)x
, 
csm-comp: G o F
, 
pscm-comp: G o F
Lemmas referenced : 
pscm-ap-comp-type, 
cube-cat_wf, 
cubical-type-sq-presheaf-type
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
Error :memTop
Latex:
\mforall{}[Gamma,Delta,Z:j\mvdash{}].  \mforall{}[s1:Z  j{}\mrightarrow{}  Delta].  \mforall{}[s2:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    ((A)s2  o  s1  =  ((A)s2)s1)
Date html generated:
2020_05_20-PM-01_50_05
Last ObjectModification:
2020_04_03-PM-08_27_18
Theory : cubical!type!theory
Home
Index