Nuprl Lemma : pscm-ap-comp-type

[C:SmallCategory]. ∀[Gamma,Delta,Z:ps_context{j:l}(C)]. ∀[s1:psc_map{j:l}(C; Z; Delta)]. ∀[s2:psc_map{j:l}(C;
                                                                                                            Delta;
                                                                                                            Gamma)].
[A:{Gamma ⊢ _}].
  ((A)s2 s1 ((A)s2)s1 ∈ {Z ⊢ _})


Proof




Definitions occuring in Statement :  pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} pscm-comp: F psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  pscm-comp-type pscm-ap-type_wf presheaf-type_wf psc_map_wf small-category-cumulativity-2 ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis hypothesisEquality universeIsType isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate applyEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma,Delta,Z:ps\_context\{j:l\}(C)].  \mforall{}[s1:psc\_map\{j:l\}(C;  Z;  Delta)].
\mforall{}[s2:psc\_map\{j:l\}(C;  Delta;  Gamma)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].
    ((A)s2  o  s1  =  ((A)s2)s1)



Date html generated: 2020_05_20-PM-01_26_26
Last ObjectModification: 2020_04_01-AM-11_50_56

Theory : presheaf!models!of!type!theory


Home Index