Nuprl Lemma : pscm-comp-type
∀[Gamma,Delta,Z,s1,s2,A:Top].  ((A)s2 o s1 ~ ((A)s2)s1)
Proof
Definitions occuring in Statement : 
pscm-ap-type: (AF)s
, 
pscm-comp: G o F
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
pscm-ap-type: (AF)s
, 
pscm-ap: (s)x
, 
pscm-comp: G o F
, 
compose: f o g
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
member: t ∈ T
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
lifting-strict-spread, 
strict4-spread, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
hypothesis, 
because_Cache
Latex:
\mforall{}[Gamma,Delta,Z,s1,s2,A:Top].    ((A)s2  o  s1  \msim{}  ((A)s2)s1)
Date html generated:
2018_05_22-PM-10_03_34
Last ObjectModification:
2018_05_20-PM-09_47_53
Theory : presheaf!models!of!type!theory
Home
Index