Nuprl Lemma : pscm-comp-type

[Gamma,Delta,Z,s1,s2,A:Top].  ((A)s2 s1 ((A)s2)s1)


Proof




Definitions occuring in Statement :  pscm-ap-type: (AF)s pscm-comp: F uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] pscm-ap-type: (AF)s pscm-ap: (s)x pscm-comp: F compose: g so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) member: t ∈ T so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  lifting-strict-spread strict4-spread top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination hypothesis because_Cache

Latex:
\mforall{}[Gamma,Delta,Z,s1,s2,A:Top].    ((A)s2  o  s1  \msim{}  ((A)s2)s1)



Date html generated: 2018_05_22-PM-10_03_34
Last ObjectModification: 2018_05_20-PM-09_47_53

Theory : presheaf!models!of!type!theory


Home Index