Nuprl Lemma : csm-ap_wf

[X,Y:j⊢]. ∀[s:X j⟶ Y]. ∀[I:fset(ℕ)]. ∀[x:X(I)].  ((s)x ∈ Y(I))


Proof




Definitions occuring in Statement :  csm-ap: (s)x cube_set_map: A ⟶ B I_cube: A(I) cubical_set: CubicalSet fset: fset(T) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical_set: CubicalSet cube_set_map: A ⟶ B cube-cat: CubeCat all: x:A. B[x] I_cube: A(I) I_set: A(I) csm-ap: (s)x pscm-ap: (s)x
Lemmas referenced :  pscm-ap_wf cube-cat_wf cat_ob_pair_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesis sqequalRule dependent_functionElimination Error :memTop

Latex:
\mforall{}[X,Y:j\mvdash{}].  \mforall{}[s:X  j{}\mrightarrow{}  Y].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[x:X(I)].    ((s)x  \mmember{}  Y(I))



Date html generated: 2020_05_20-PM-01_41_26
Last ObjectModification: 2020_04_03-PM-03_33_46

Theory : cubical!type!theory


Home Index