Nuprl Lemma : nc-e'-lemma2

[I:fset(ℕ)]. ∀[i:ℕ]. ∀[J:fset(ℕ)]. ∀[g:J ⟶ I]. ∀[j:{j:ℕ| ¬j ∈ J} ].  ((i0) ⋅ g,i=j ⋅ (j0) ∈ J ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-0: (i0) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J not: ¬A implies:  Q subtype_rel: A ⊆B uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: false: False nc-e': g,i=j nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) names: names(I) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nc-0: (i0) top: Top nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) DeMorgan-algebra: DeMorganAlgebra true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  names_wf add-name_wf fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self istype-void names-hom_wf istype-nat eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base dM0-sq-empty equal_wf nat_properties full-omega-unsat intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf trivial-member-add-name1 lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf nc-0_wf squash_wf true_wf dM-lift-0 dM-lift-inc subtype_rel_self iff_weakening_equal dM0_wf intformand_wf int_formula_prop_and_lemma not-added-name istype-universe dM-lift_wf2 dM-point-subtype f-subset-add-name dM-lift-nc-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut setElimination thin rename functionExtensionality extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setIsType inhabitedIsType sqequalRule functionIsType universeIsType applyEquality intEquality independent_isectElimination because_Cache lambdaEquality_alt natural_numberEquality isect_memberEquality_alt axiomEquality isectIsTypeImplies lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination lambdaFormation isect_memberEquality voidEquality dependent_pairFormation approximateComputation lambdaEquality int_eqEquality dependent_set_memberEquality productEquality imageElimination universeEquality imageMemberEquality baseClosed Error :memTop,  independent_pairFormation isectEquality dependent_set_memberEquality_alt

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[g:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].    ((i0)  \mcdot{}  g  =  g,i=j  \mcdot{}  (j0))



Date html generated: 2020_05_20-PM-01_37_19
Last ObjectModification: 2020_01_08-AM-11_01_47

Theory : cubical!type!theory


Home Index