Nuprl Lemma : dM-point-subtype

[I,J:fset(ℕ)].  Point(dM(I)) ⊆Point(dM(J)) supposing I ⊆ J


Proof




Definitions occuring in Statement :  dM: dM(I) lattice-point: Point(l) f-subset: xs ⊆ ys fset: fset(T) int-deq: IntDeq nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T top: Top union-deq: union-deq(A;B;a;b) sumdeq: sumdeq(a;b) prop: DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} so_apply: x[s] nat:
Lemmas referenced :  dM-point fset-subtype fset_wf names_wf subtype_rel_union names-subtype assert_wf fset-antichain_wf union-deq_wf names-deq_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf f-subset_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaEquality sqequalHypSubstitution cut lemma_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalRule setElimination rename dependent_set_memberEquality hypothesisEquality applyEquality unionEquality independent_isectElimination because_Cache instantiate productEquality cumulativity universeEquality intEquality natural_numberEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].    Point(dM(I))  \msubseteq{}r  Point(dM(J))  supposing  I  \msubseteq{}  J



Date html generated: 2016_05_18-AM-11_56_25
Last ObjectModification: 2015_12_28-PM-03_09_10

Theory : cubical!type!theory


Home Index