Nuprl Lemma : fset-subtype
∀[A,B:Type].  fset(A) ⊆r fset(B) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
fset: fset(T)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
set-equal: set-equal(T;x;y)
, 
iff: P 
⇐⇒ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
fset_wf, 
quotient-member-eq, 
list_wf, 
set-equal_wf, 
set-equal-equiv, 
subtype_rel_list, 
equal-wf-base, 
subtype_rel_wf, 
l_member_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
select_member, 
lelt_wf, 
length_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_functionElimination, 
productEquality, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
universeEquality, 
lambdaFormation, 
independent_pairFormation, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A,B:Type].    fset(A)  \msubseteq{}r  fset(B)  supposing  A  \msubseteq{}r  B
Date html generated:
2017_04_17-AM-09_18_47
Last ObjectModification:
2017_02_27-PM-05_22_35
Theory : finite!sets
Home
Index