Nuprl Lemma : fset-subtype

[A,B:Type].  fset(A) ⊆fset(B) supposing A ⊆B


Proof




Definitions occuring in Statement :  fset: fset(T) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] guard: {T} implies:  Q prop: set-equal: set-equal(T;x;y) iff: ⇐⇒ Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B rev_implies:  Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B squash: T true: True
Lemmas referenced :  fset_wf quotient-member-eq list_wf set-equal_wf set-equal-equiv subtype_rel_list equal-wf-base subtype_rel_wf l_member_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf select_member lelt_wf length_wf equal_wf squash_wf true_wf iff_weakening_equal less_than_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry applyEquality independent_functionElimination productEquality because_Cache axiomEquality isect_memberEquality universeEquality lambdaFormation independent_pairFormation setElimination rename natural_numberEquality unionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality computeAll dependent_set_memberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[A,B:Type].    fset(A)  \msubseteq{}r  fset(B)  supposing  A  \msubseteq{}r  B



Date html generated: 2017_04_17-AM-09_18_47
Last ObjectModification: 2017_02_27-PM-05_22_35

Theory : finite!sets


Home Index