Nuprl Lemma : not-added-name

[I:fset(ℕ)]. ∀[i:ℕ]. ∀[x:names(I+i)].  x ∈ names(I) supposing x ≠ i


Proof




Definitions occuring in Statement :  add-name: I+i names: names(I) fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] nequal: a ≠ b ∈  member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a names: names(I) all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q or: P ∨ Q nequal: a ≠ b ∈  nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  fset_wf add-name_wf names_wf nequal_wf strong-subtype-self le_wf strong-subtype-set3 strong-subtype-deq-subtype int-deq_wf nat_wf fset-member_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt nat_properties fset-member-add-name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid dependent_functionElimination hypothesisEquality hypothesis productElimination independent_isectElimination unionElimination isectElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll dependent_set_memberEquality applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[x:names(I+i)].    x  \mmember{}  names(I)  supposing  x  \mneq{}  i



Date html generated: 2016_05_18-PM-00_00_19
Last ObjectModification: 2016_01_18-PM-01_03_41

Theory : cubical!type!theory


Home Index