Nuprl Lemma : fset-member-add-name

I:fset(ℕ). ∀i,j:ℕ.  uiff(j ∈ I+i;(j i ∈ ℤ) ∨ j ∈ I)


Proof




Definitions occuring in Statement :  add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uiff: uiff(P;Q) all: x:A. B[x] or: P ∨ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] add-name: I+i names-deq: NamesDeq uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T implies:  Q nat: subtype_rel: A ⊆B sq_stable: SqStable(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} prop: squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable__equal_nat fset_wf uiff_wf member-fset-add fset-add_wf fset-member_witness strong-subtype-self strong-subtype-set3 strong-subtype-deq-subtype or_wf int_subtype_base le_wf set_subtype_base subtype_base_sq decidable__fset-member decidable__equal_int int-deq_wf nat_wf fset-member_wf equal_wf decidable__or sq_stable_from_decidable
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation isect_memberFormation lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_functionElimination intEquality setElimination rename hypothesisEquality hypothesis applyEquality sqequalRule dependent_functionElimination introduction unionElimination inlFormation instantiate cumulativity independent_isectElimination lambdaEquality natural_numberEquality inrFormation imageMemberEquality baseClosed imageElimination addLevel productElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}i,j:\mBbbN{}.    uiff(j  \mmember{}  I+i;(j  =  i)  \mvee{}  j  \mmember{}  I)



Date html generated: 2016_05_18-PM-00_00_01
Last ObjectModification: 2016_01_18-PM-01_03_50

Theory : cubical!type!theory


Home Index