Nuprl Lemma : fset-member-add-name
∀I:fset(ℕ). ∀i,j:ℕ.  uiff(j ∈ I+i;(j = i ∈ ℤ) ∨ j ∈ I)
Proof
Definitions occuring in Statement : 
add-name: I+i
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
add-name: I+i
, 
names-deq: NamesDeq
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
prop: ℙ
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
decidable__equal_nat, 
fset_wf, 
uiff_wf, 
member-fset-add, 
fset-add_wf, 
fset-member_witness, 
strong-subtype-self, 
strong-subtype-set3, 
strong-subtype-deq-subtype, 
or_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
subtype_base_sq, 
decidable__fset-member, 
decidable__equal_int, 
int-deq_wf, 
nat_wf, 
fset-member_wf, 
equal_wf, 
decidable__or, 
sq_stable_from_decidable
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
independent_pairFormation, 
isect_memberFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_functionElimination, 
intEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
dependent_functionElimination, 
introduction, 
unionElimination, 
inlFormation, 
instantiate, 
cumulativity, 
independent_isectElimination, 
lambdaEquality, 
natural_numberEquality, 
inrFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addLevel, 
productElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}i,j:\mBbbN{}.    uiff(j  \mmember{}  I+i;(j  =  i)  \mvee{}  j  \mmember{}  I)
Date html generated:
2016_05_18-PM-00_00_01
Last ObjectModification:
2016_01_18-PM-01_03_50
Theory : cubical!type!theory
Home
Index