Nuprl Lemma : nc-0_wf
∀[I:fset(ℕ)]. ∀[i:ℕ].  ((i0) ∈ I ⟶ I+i)
Proof
Definitions occuring in Statement : 
nc-0: (i0), 
add-name: I+i, 
names-hom: I ⟶ J, 
fset: fset(T), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
names-hom: I ⟶ J, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nc-0: (i0), 
names: names(I), 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
top: Top, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
dM0-sq-empty, 
dM0_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
dM_inc_wf, 
not-added-name, 
names_wf, 
add-name_wf, 
nat_wf, 
fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].    ((i0)  \mmember{}  I  {}\mrightarrow{}  I+i)
 Date html generated: 
2017_10_05-AM-01_02_16
 Last ObjectModification: 
2017_07_28-AM-09_26_12
Theory : cubical!type!theory
Home
Index