Nuprl Lemma : dM-lift-inc

[I,J:fset(ℕ)]. ∀[f:I ⟶ J]. ∀[x:names(J)].  ((dM-lift(I;J;f) <x>(f x) ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra prop: and: P ∧ Q guard: {T} uimplies: supposing a so_apply: x[s] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) names-hom: I ⟶ J implies:  Q squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  dM-lift_wf set_wf dma-hom_wf dM_wf all_wf names_wf equal_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM_inc_wf squash_wf true_wf subtype_rel_self iff_weakening_equal names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination sqequalRule lambdaEquality applyEquality instantiate productEquality cumulativity because_Cache independent_isectElimination setElimination rename lambdaFormation productElimination imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis natural_numberEquality imageMemberEquality baseClosed independent_functionElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].  \mforall{}[x:names(J)].    ((dM-lift(I;J;f)  <x>)  =  (f  x))



Date html generated: 2018_05_23-AM-08_28_22
Last ObjectModification: 2018_05_20-PM-05_36_12

Theory : cubical!type!theory


Home Index