Nuprl Lemma : dM-lift_wf

[I,J:fset(ℕ)]. ∀[f:I ⟶ J].  (dM-lift(I;J;f) ∈ {g:dma-hom(dM(J);dM(I))| ∀j:names(J). ((g <j>(f j) ∈ Point(dM(I)))} \000C)


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM_inc: <x> dM: dM(I) names: names(I) dma-hom: dma-hom(dma1;dma2) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J dM-lift: dM-lift(I;J;f) subtype_rel: A ⊆B all: x:A. B[x] deq: EqDecider(T) lattice-point: Point(l) record-select: r.x dM: dM(I) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) btrue: tt bool: 𝔹 iff: ⇐⇒ Q and: P ∧ Q implies:  Q assert: b rev_implies:  Q dM_inc: <x> so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra prop: guard: {T} uimplies: supposing a so_apply: x[s] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2)
Lemmas referenced :  names-hom_wf fset_wf nat_wf free-dma-lift_wf names_wf names-deq_wf dM_wf free-dml-deq_wf subtype_rel_self dma-hom_wf all_wf equal_wf lattice-point_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf dM_inc_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache applyEquality dependent_functionElimination functionExtensionality setEquality lambdaEquality instantiate productEquality cumulativity independent_isectElimination setElimination rename

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].
    (dM-lift(I;J;f)  \mmember{}  \{g:dma-hom(dM(J);dM(I))|  \mforall{}j:names(J).  ((g  <j>)  =  (f  j))\}  )



Date html generated: 2018_05_23-AM-08_27_35
Last ObjectModification: 2018_05_20-PM-05_35_37

Theory : cubical!type!theory


Home Index