Nuprl Lemma : dM-lift-0

[I,J:fset(ℕ)]. ∀[f:I ⟶ J].  ((dM-lift(I;J;f) 0) 0 ∈ Point(dM(I)))


Proof




Definitions occuring in Statement :  dM-lift: dM-lift(I;J;f) names-hom: I ⟶ J dM0: 0 dM: dM(I) lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top
Lemmas referenced :  dM-lift-0-sq dM0_wf names-hom_wf fset_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality axiomEquality because_Cache

Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].    ((dM-lift(I;J;f)  0)  =  0)



Date html generated: 2018_05_23-AM-08_27_51
Last ObjectModification: 2018_05_20-PM-05_35_58

Theory : cubical!type!theory


Home Index