Nuprl Lemma : dM-lift-0
∀[I,J:fset(ℕ)]. ∀[f:I ⟶ J].  ((dM-lift(I;J;f) 0) = 0 ∈ Point(dM(I)))
Proof
Definitions occuring in Statement : 
dM-lift: dM-lift(I;J;f)
, 
names-hom: I ⟶ J
, 
dM0: 0
, 
dM: dM(I)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
dM-lift-0-sq, 
dM0_wf, 
names-hom_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[I,J:fset(\mBbbN{})].  \mforall{}[f:I  {}\mrightarrow{}  J].    ((dM-lift(I;J;f)  0)  =  0)
Date html generated:
2018_05_23-AM-08_27_51
Last ObjectModification:
2018_05_20-PM-05_35_58
Theory : cubical!type!theory
Home
Index