Nuprl Lemma : dM-lift-0-sq
∀[I,J,f:Top].  (dM-lift(I;J;f) 0 ~ 0)
Proof
Definitions occuring in Statement : 
dM-lift: dM-lift(I;J;f)
, 
dM0: 0
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dM-lift: dM-lift(I;J;f)
, 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f)
, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
dM0: 0
, 
lattice-0: 0
, 
record-select: r.x
, 
dM: dM(I)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq)
, 
free-dist-lattice: free-dist-lattice(T; eq)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
btrue: tt
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
Lemmas referenced : 
top_wf, 
free-DeMorgan-algebra-property, 
free-dist-lattice-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
extract_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[I,J,f:Top].    (dM-lift(I;J;f)  0  \msim{}  0)
Date html generated:
2018_05_23-AM-08_27_43
Last ObjectModification:
2018_05_20-PM-05_35_46
Theory : cubical!type!theory
Home
Index